
Kaputt – version 1.0

http://kaputt.x9c.fr

Copyright c© 2008-2009 Xavier Clerc – kaputt@x9c.fr
Released under the GPL version 3

December 17, 2009

Abstract: This document presents Kaputt, its purpose and the way it works. This document is
structured in five parts explaining first how to build, and how to use Kaputt. Then, the following
parts demonstrate how to write tests cases, in their two essential forms: assertion-based tests and
specification-based tests. Finally, the various output modes are exposed.

Introduction

Kaputt is a unit testing tool for the Objective Caml language1. Its name stems from the following
acronym: Kaputt is A Popperian Unit Testing Tool. The adjective popperian is derived from the
name of Karl Popper, a famous philosopher of science who is known for forging the concept of falsi-
fiability. The tribute to Popper is due to the fact that Kaputt, like most test-based methodologies,
will never tell you that your function is correct; it can only point out errors.

Kaputt features two main kinds of tests:

• assertion-based tests, inspired by the xUnit tools2;

• specification-based tests, inspired by the QuickCheck tool3.

When writing assertion-based tests, the developer explicitly encodes input values and checks that
output values satisfy given assertions. When writing specification-based tests, the developer en-
codes the specification of the tested function and then requests the library to either generate random
values, or enumerate values to be tested against the specification.

Kaputt also provides shell-based tests that barely execute commands such as grep, diff, etc. They
can be regarded as a special kind of assertion-based tests, and can be useful to run the whole ap-
plication and compare its output to reference runs whose output has been stored into files.

Kaputt, in its 1.0 version, is designed to work with version 3.11.1 of Objective Caml. Kaputt
is released under the GPL version 3. This licensing scheme should not cause any problem, as
instrumented applications are intended to be used during developement but should not be released
publicly. Bugs should be reported at http://bugs.x9c.fr.

1The official Caml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

2Unit testing tools for Java (JUnit – http://junit.org), OCaml (OUnit – http://www.xs4all.nl/~mmzeeman/

ocaml/), etc.
3http://www.cs.chalmers.se/~rjmh/QuickCheck/

1

http://kaputt.x9c.fr
mailto:kaputt@x9c.fr
http://bugs.x9c.fr
http://caml.inria.fr
http://junit.org
http://www.xs4all.nl/~mmzeeman/ocaml/
http://www.xs4all.nl/~mmzeeman/ocaml/
http://www.cs.chalmers.se/~rjmh/QuickCheck/

Building Kaputt

Kaputt can be built from sources using make, and Objective Caml version 3.11.1. Under usual
circumstances, there should be no need to edit the Makefile. Kaputt is compiled by executing the
command make all and installed by executing the command make install with root privileges.
The following targets are available:

all compiles all files, and generates html documentation

bytecode compiles the bytecode version (ocamlc)

native compiles the native version (ocamlopt)

java compiles the java version (ocamljava)

html-doc generates html documentation

clean-all deletes all produced files (including documentation)

clean deletes all produced files (excluding documentation)

clean-doc deletes documentation files

install copies library files

ocamlfind installs through ocamlfind

tests runs the tests

depend populates the dependency files (they are initially empty)

The Java4 version will be built only if the ocamljava5 compiler is present and located by the
makefile.

Using Kaputt

Running tests from compiled code

To use Kaputt, it is sufficient to compile and link with the library. This is usually done by adding
of the following to the compiler invocation:

• -I +kaputt kaputt.cma (for ocamlc compiler);

• -I +kaputt kaputt.cmxa (for ocamlopt compiler);

• -I +kaputt kaputt.cmja (for ocamljava compiler).

Since version 1.0, to access bigarray- and num-specific elements, it is necessary to link with respec-
tively kaputtBigarray.cm[oxj] and kaputtNums.cm[oxj].

Typically, the developer wants to compile the code for tests only for internal (test) versions, and
not for public (release) versions. Hence the need to be able to build two versions. The IFDEF

2

Code sample 1 Trivial program featuring two versions (source.ml).

let () =
IFDEF DEBUG THEN

print_endline "debug mode on"
ELSE

print_endline "debug mode off"
ENDIF

directive of camlp4 can be used to fulfill this need. Code sample 1 shows a trivial program that is
designed to be compiled either to debug or to release mode.
To compile the debug version, one of the following commands (according to the compiler used)
should be issued:

• ocamlc -pp ’camlp4oof -DDEBUG’ source.ml;

• ocamlopt -pp ’camlp4oof -DDEBUG’ source.ml;

• ocamljava -pp ’camlp4oof -DDEBUG’ source.ml.

At the opposite, to compile the release version, one of following commands should be executed:

• ocamlc -pp camlp4oof source.ml;

• ocamlopt -pp camlp4oof source.ml;

• ocamljava -pp camlp4oof source.ml.

This means that the developer can choose the version to compile by only specifying a different
preprocessor (precisely by enabling/disabling a preprocessor argument) to be used by the invoked
OCaml compiler.

Running tests from the toplevel

Code sample 2 shows how to use Kaputt from a toplevel session. First, the Kaputt directory
is added to the search path. Then, the library is loaded and the module containing shorthand
definitions is opened. Finally, the check method is used in order to check that the successor of an
odd integer is even.

Writing assertion-based tests

When writing assertion-based tests, one is mainly interested in the Assertion and Test modules.
The Assertion module provides various functions performing tests over values. Then, the Test
module allows to run the tests and get some report about their outcome. An assertion-based test
built by the Test.make assert test function is made of four elements:

• a title;
4The official website for the Java Technology can be reached at http://java.sun.com.
5OCaml compiler generating Java bytecode, by the same author – http://ocamljava.x9c.fr

3

http://java.sun.com
http://ocamljava.x9c.fr

Code sample 2 Toplevel session running a generator-based test.

Objective Caml version 3.11.1

#directory "+kaputt";;
#load "kaputt.cma";;
open Kaputt.Abbreviations;;
check Gen.int succ [Spec.is_odd_int ==> Spec.is_even_int];;
Test ’untitled no 1’ ... 100/100 cases passed
- : unit = ()
#

• a set up function, whose signature is unit -> ’a;

• a function performing the actual tests, whose signature is ’a -> ’b;

• a tear down function, whose signature is ’b -> unit.

The idea of the set up and tear down functions is that they bracket the execution of the test
function. If there is no data to pass to the test function (i.e. its signature is unit -> unit), the
obvious choices for set up and tear down are respectively Test.return () and ignore; another
possibility is to use the make simple test function. Code sample 3 shows a short program declaring
and running two tests, the first one uses no data while the second one does. The second test also
exhibits the fact that the title is optional.

Code sample 3 Assertion-based tests.

open Kaputt.Abbreviations

let t1 =
Test.make_simple_test

~title:"first test"
(fun () -> Assert.equal_int 3 (f 2))

let t2 =
Test.make_assert_test

(fun () -> open_in "data")
(fun ch -> Assert.equal_string "waited1" (f1 ch); ch)
close_in_noerr

let () = Test.run_tests [t1; t2]

Writing specification-based tests

When writing specification-based tests, one is mainly interested in the Generator, Specification,
and Test modules. The Generator module defines the concept of generator that is a function
randomly producing values of a given type, and provides implementations for basic types and

4

combinators. The Specification module defines the concept of specification that is predicates
over values and their images through the tested function, as well as predicates over basic types and
combinators. A specification-based test built by Test.make random test is made of seven elements
(the four first ones being optional):

• a title;

• an integer, indicating how many cases should be generated;

• a classifier, used to categorize the generated cases;

• a randomness source;

• a generator;

• a function to be tested;

• a specification.

The generator, of type ’a Generator.t, is used to randomly produce test cases. Tests cases are
produced until the requested number has be reached. One should notice that a test case is counted
if and only if the generated value satisfies one of the preconditions of the specification.
The classifier is used to characterize the generated test cases to give the developer an overview
of the coverage of the test (in the sense that the classifier gives hints about the portions of code
actually executed). For complete coverage information, one is advised to use the Bisect tool6 by
the same author.

The specification is a list of 〈precondition, postcondition〉 couples. This list should be regarded
as a case-based definition. When checking if the function matches its specification, Kaputt will
determine the first precondition from the list that holds, and ensure that the corresponding post-
condition holds: if not, a counterexample has been found.
Assuming that the tested function has a signature of ’a -> ’b, a precondition has type ’a
predicate (that is ’a -> bool) and a postcondition has type (’a * ’b) predicate (that is
(’a * ’b) -> bool). The preconditions are evaluated over the generated values, while the post-
conditions are evaluated over 〈generated values, image by tested function〉 couples.
An easy way to build 〈precondition, postcondition〉 couples is to use the => infix operator. Addi-
tionally, the ==> infix operator can be used when the postcondition is interested only in the image
through the function (ignoring the generated value), thus enabling lighter notation.

Code sample 4 shows how to build a test for function f whose domain is the string type. The
classifier stores generated values into two categories, according to the length of the string. The
pre i functions are of type string -> bool, while the post i functions are of type (string * t)
-> bool where t is the codomain (also sometimes refered to as the “range”) of the tested function
f.

Output modes

The previous sections have exposed how to run tests using the Test.run tests function. When only
passed a list of tests, the outcome of these tests is written to the standard output in a (hopefully)

6Code coverage tool for the OCaml language – http://bisect.x9c.fr

5

http://bisect.x9c.fr

Code sample 4 Specification-based tests.

open Kaputt.Abbreviations

let t =
Test.make_random_test

~title:"random test"
~nb_runs:128
~classifier:(fun s -> if (String.length s) < 4 then "short" else "long")
(Gen.string (Gen.make_int 0 16) Gen.char)
f
[pre_1 => post_1 ;
...
pre_n => post_n]

let () = Test.run_test t

user-friendly text setting. It is however possible to change both the destination and the layout by
supplying an optional output parameter of type Test.output mode, that is a sum type with the
following constructors:

• Text output of out channel
classical layout, destination being the given channel

• Html output of out channel
HTML table-based layout, destination being the given channel

• Xml output of out channel
XML layout using the dtd shown by code sample 5, destination being the given channel

• Xml junit output of out channel
JUnit-compatible XML layout (enabling for instance Hudson7 integration), destination being
the given channel

• Csv output of out channel * string
CSV layout using the given string as the separator, destination being the given channel

The passed channel is closed if it is neither stdout, nor stderr.

7Continuous integration server http://hudson-ci.org/

6

http://hudson-ci.org/

Code sample 5 DTD used for XML output.

<!ELEMENT kaputt-report
(passed-test|failed-test|uncaught-exception|random-test|enum-test|shell-test)*>

<!ELEMENT passed-test EMPTY>
<!ATTLIST passed-test name CDATA #REQUIRED>

<!ELEMENT failed-test EMPTY>
<!ATTLIST failed-test name CDATA #REQUIRED>
<!ATTLIST failed-test expected CDATA>
<!ATTLIST failed-test not-expected CDATA>
<!ATTLIST failed-test actual CDATA #REQUIRED>
<!ATTLIST failed-test message CDATA>

<!ELEMENT uncaught-exception EMPTY>
<!ATTLIST uncaught-exception name CDATA #REQUIRED>
<!ATTLIST uncaught-exception exception CDATA #REQUIRED>

<!ELEMENT random-test (counterexamples?,categories?)>
<!ATTLIST random-test name CDATA #REQUIRED>
<!ATTLIST random-test valid CDATA #REQUIRED>
<!ATTLIST random-test total CDATA #REQUIRED>
<!ATTLIST random-test uncaught CDATA #REQUIRED>

<!ELEMENT enum-test (counterexamples?)>
<!ATTLIST enum-test name CDATA #REQUIRED>
<!ATTLIST enum-test valid CDATA #REQUIRED>
<!ATTLIST enum-test total CDATA #REQUIRED>
<!ATTLIST enum-test uncaught CDATA #REQUIRED>

<!ELEMENT counterexamples (counterexample*)>
<!ELEMENT counterexample EMPTY>
<!ATTLIST counterexample value CDATA #REQUIRED>

<!ELEMENT categories (category*)>
<!ELEMENT category EMPTY>
<!ATTLIST category name CDATA #REQUIRED>
<!ATTLIST category total CDATA #REQUIRED>

<!ELEMENT shell-test EMPTY>
<!ATTLIST shell-test name CDATA #REQUIRED>
<!ATTLIST shell-test exit-code CDATA #REQUIRED>

7

	Introduction
	Building Kaputt
	Using Kaputt
	Running tests from compiled code
	Running tests from the toplevel

	Writing assertion-based tests
	Writing specification-based tests
	Output modes

